Public release of a tagged loggerhead sea turtle in Libya - see pp. 7-9 (photo: A. Hamza).

Articles:
Flags Reduce Sea Turtle Nest Predation by Foxes in NE Brazil..G Longo et al.
Acclimating Captive Hawksbills to Sea Prior to Release..B Whitman
Inter-nesting Dive and Surface Behaviour of Green Turtles at Raine Island.....................................I Bell et al.
Sea Turtles Tagging in Libya...A Hamza et al.
Shifting Patterns of Nocturnal Emergence Events of Nesting Loggerhead TurtlesR Welsh & A Tucker
Notes:
Foraging by a Gravid Green Turtle During the Internesting Interval in Guadeloupe.....................E Delcroix et al.
A Leatherback Turtle Encountered in El Nido, Palawan, Philippines...R Salinas et al.

IUCN-MTSG Quarterly Report
Announcement
Book Review
News & Legal Briefs
Recent Publications
Shifting Patterns of Nocturnal Emergence Events of Nesting Loggerhead Turtles (*Caretta caretta*)

Ryan Welsh & Anton D. Tucker
Mote Marine Laboratory, Sarasota, Florida 34236 USA (E-mail: welshry@mote.org)

The reproductive biology of nesting female loggerhead turtles (*Caretta caretta*) is typically nocturnal but can be influenced by lunar phase, intertidal exposures from beach slopes and correlated tidal amplitudes, and responses to anthropogenic disturbances (Fritts & Hoffman 1982, Frazer 1983). The tendency of most larger-bodied forms of sea turtles to nest at night is linked to thermal tolerances and inertias correlated with large body size (Spotila & Standora 1985). However, the time domain of nocturnal nesting events and emergences receives scant attention within the literature, particularly the nocturnal times of emergence on the nesting beach. The perceived lack of analysis on turtle emergence events is puzzling since there is no paucity of data on this aspect. Data on temporal distribution of emergence events can have conservation and management value in determining the anthropogenic potential for disturbance of nesting females. New information on nesting emergences defines a scope for interaction with human activities that occur adjacent to beaches, or for beaches where beach or off-road driving is a legal or cultural norm.

This present note on emergence events reviews 21 seasons of nightly beach patrols for nesting loggerheads on the southern 6 km of Casey Key in Sarasota County, Florida (27.13N, -82.47W). The beach is not yet subject to beach nourishment (Rumbold et al. 2001) or ecotourism (Wilson & Tisdell 2001) as factors that might influence turtle nesting. Patrols by ATV occurred hourly from approximately 2000 hours to 0500 hours for the main nesting months of June and July. Time of each emergence event was recorded for 93.3% (2535/2717) of the turtles that were encountered. Each encounter was classed to the following categories: 1) Pre-Oviposition which included the following behaviors: beach approach, body pitting, nest cavity construction; 2) Oviposition; and 3) Post-Oviposition which included the following behaviors: covering/camouflaging, and leaving the nest.

The emergence events had a strongly bimodal pattern with an increase after dusk to a peak at 2300 hr, a drop for the 0000 hour, and a second peak at 0100 hr, then decreasing until dawn (Fig. 1). The timing of emergence events was significantly different from a normal distribution (Kolmogorov-Smirnov goodness of fit, $D = 0.818$). The behavioral activity when encountered was recorded for 52.6% (1334/2535) of the emergence events (Fig. 2) and the bimodality was found in all three of the defined nesting behaviors.

Both graphs (Figs. 1, 2) suggested that emergence events were comprised of two events, a first peak arriving around the 2200 and 2300 hours accounting for 44% of the nesting activity and a second smaller peak around the 0100 and 0200 hours representing 29% of the nesting activity. Overall, nesting activities were concentrated between 2200 to 0200 hr., with 81.9% of the defined activities. However, emergence events were still found, although in declining numbers, during the remaining hours of the nocturnal period. Interestingly, 1.4% of turtle encounters were around dusk (1900-2000 hrs), but there were no recorded observations of turtles arriving to nest during the dawn hours (0600-0700 hrs). These data for 6 km of Casey Key are supported by anecdotal observations for the 56 km of beach monitored daily at dawn by Mote Marine Laboratory.
Taking the same data from a different perspective produced a temporal contrast of nesting behavior across years, as we compared the percents of females arriving before and after midnight (Fig. 3). From 1987-2000 the females typically emerged before midnight (2400 hr), which contrasted with a change in 2003 as females shifted to nesting predominantly after midnight.

Our results for a peak of emergence activity from 2200 to 2300 hr confirm earlier findings from Sanibel Island, Florida (LeBuff 1990). However, a notable difference is a secondary peak of activity on Casey Key that was absent in Sanibel loggerheads. Casey Key has people present on the beach most nights, particularly on weekends near public access areas in contrast with the Sanibel Island studies that were conducted over 30 years ago on a relatively remote beach. One might suspect a difference in patrol coverage if monitoring patrols were concluded earlier on Sanibel and so did not detect a secondary peak, but accounts in LeBuff (1998) appear to rule that out. A more plausible scenario may be of altered turtle behavior with the secondary peak on Casey Key as a possible behavioral artifact, resulting from a non-nesting emergence early in the evening and a postponed return of the same turtle.

Tidal influences can be discounted as a determinant in determining female emergence times, in the manner explored by other papers (Fritts & Hoffman 1982, Frazer 1983, Azanza et al. 2003) because, Casey Key generally has tides of less than 1 meter. It remains unclear what factors may be associated with a behavioral shift that began around 2003 for females emerging later at night than in previous years (Fig. 3). Some factors can be discounted, such as usage of ATVs for night patrols, as this patrol method without lights has occurred throughout the study (J. Foote, pers. comm.).

Nevertheless, there is an unquestionable increase in coastal development and human use on beaches over the time frame of monitoring. Consequently, a shift in emergence times may be associated with more people on the beaches especially during the hours of dusk, in which sunset watching and continued use is a popular activity on the western coast of Florida. This is a pragmatic hypothesis, but at the present time there are no corresponding data on human activity to test that premise. A need exists for further studies to understand if behavioral shifts of emergence timing are related to human activities on the beach.

In conclusion, a peak of nesting female emergence activity occurs in the 2300 hour with sea turtle activity occurring through the night though rarely before dusk or after dawn. For beaches where there are potentials for overlap of human activities and nesting turtles, new studies should evaluate the potential for anthropogenic disturbance to females approaching the nesting beaches (Waayers et. al. 2006). For beaches hosting traffic by foot or vehicle, the form of distribution of nesting emergences may offer new data to test the hypothesis of anthropogenic disturbance. Although we presented no data here on hatchling emergence times (however, see Witherington et. al. 1990), such data may also be critical for better informed management decisions relating to human activity on the beaches (Lamont et al. 2002).

Acknowledgments: We are grateful to all staff, interns, and volunteers who assisted with the nocturnal tagging patrols. ATV storage at Casey Key is facilitated by Sarasota County Parks and Recreation. J. Foote shared essential details concerning the early history of the tagging program on Casey Key.

A female green turtle (*Chelonia mydas*) was found dead stranded on the outskirts of the town of Gosier, on the southern end of the island of Grande-Terre in Guadeloupe, French West Indies (16.205122, -61.49564), on 01 November 2009. The carcass appeared to be 3-4 days post-mortem, thus we extrapolated date of death being 28-29 October 2009. The turtle measured 111.5 cm curved carapace length and 101 cm curved carapace width, and bore an inconel tag on the trailing edge of each of her front flippers (Numbers FWI 3079/FWI 2659) that had been placed there on 20 August 2008 by volunteers patrolling Les Galets beach on the island of Marie Galante, about 40 km southeast from where the stranding was observed. After being tagged, this turtle was observed nesting again on 01 September and 14 September 2008, on the same nesting beach. A 12-13 day internesting interval is common to other green turtle nesting sites (Miller 1997).

We necropsied the turtle, but found no gross signs of injury, lesion or illness. Her body condition was good, and her gastro-intestinal tract was full of sea grasses, primarily *Syringodium filiforme*, which is a primary food source for green turtles (Mortimer 1981, 1982). Given that she appeared healthy and was eating just prior to death, we assume that the cause of death was drowning due to accidental capture in a submerged fishing net. Each year, incidental capture in fishing gear in Guadeloupe causes the death of 800 – 1000 marine turtles (Delcroix unpub data).

This turtle also had 30-40 unshelled eggs in her oviduct, which suggests that she had been foraging during the nesting season. These unshelled eggs likely would have been part of a final nest that she would have laid, although it is also possible that the eggs may have been in the process of being resorbed. Green turtles can lay between 1 and 8 nests in a single nesting season (Alvarado-Diaz et al. 2003), and in the case of the stranded green turtle, if her first nest was indeed 20 August and she maintained a 12-13 days internesting interval, the eggs remaining in the turtle’s oviduct may represent the 6th or 7th nest of the season. Also, green turtles are commonly observed to migrate long distances between nesting and foraging grounds (Solé 1994, Hirth 1997, Harrsion 2006). This has also been the case for post-nesting green turtles tracked using satellite tags: two green turtles from Les Galets beach moved between 144 and 200 km at the end of the nesting season (Delcroix et al. 2008). This stranded green turtle was found <40 km from its nesting beach, and possibly died even closer but floated away during the 3-4 days before it was found.

The question of foraging by green turtles during the nesting season remains unresolved. In Ascension Island, Hays et al. (2002) found...
RECENT PUBLICATIONS

This section is compiled by the Archie Carr Center for Sea Turtle Research (ACCSTR), University of Florida. The ACCSTR maintains the Sea Turtle On-line Bibliography: (http://accstr.ufl.edu/biblio.html).

Included in this section are publications that have been pre-published online prior to the hardcopy publication. These citations are included because of the frequent delay in hardcopy publication and the importance of keeping everyone informed of the latest research accomplishments. Please email us <ACCSTR@zoology.ufl.edu> when your papers are published online. Check the online bibliography for final citation, including volume and page numbers.

It is requested that a copy of all publications (including technical reports and non-refereed journal articles) be sent to both:

1) The ACCSTR for inclusion in both the on-line bibliography and the MTN. Address: Archie Carr Center for Sea Turtle Research, University of Florida, PO Box 118525, Gainesville, FL 32611, USA.

2) The editors of the Marine Turtle Newsletter to facilitate the transmission of information to colleagues submitting articles who may not have access to on-line literature reviewing services.

RECENT PAPERS

BROCK, K.A., J.S. REECE & L.M. EHRHART. 2009. The effects of artificial beach nourishment on marine turtles: differences between loggerhead and green turtles. Restoration Ecology 17: 297-307. K. Brock, Dept of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA. (E-mail: kkbrock@wavecable.com)

DUBLIN, H.T. 2008. The Dhamra Port issue: some views from the Chair of the IUCN SSC. Indian Ocean Turtle Newsletter No. 8: 25-27. Available at http://www.seaturtle.org/iotn

DUTTON, P.H. & A. FREY. 2009. Characterization of polymorphic microsatellite markers for the green turtle (Chelonia mydas). Molecular Ecology Resources 9: 354-356. P.H. Dutton, NOAA SW Fisheries Science Center, 8604 La Jolla Shores Dr, La Jolla, CA 92037 USA. (E-mail: peter.dutton@noaa.gov)

GAMEZ VIVALDO, S., L.J. GARCIA MARQUEZ, D. OSORIO SARABIA, J.L. VAZQUEZ GARCIA & F. CONSTANTINO CASAS. 2009. Pathology in the olive ridley turtles (Lepidochelys olivacea) that arrived to the shores of Cuyutlan, Colima, Mexico. Veterinaria Mexico 40: 69-78. S.G. Vivaldo, Ctr Ecol El Tortugario, Av Adolfo Lopez Mateos,Sn 4 Km Poblado de Cuyutl, Cuyutlan 28300, Colima, Mexico. (E-mail: suskabel@hotmail.com)

LYSON, T. & S.F. GILBERT. 2009. Turtles all the way down: loggerheads at the root of the chelonian tree. Evolution & Development 11: 133-135. S. F. Gilbert, Swarthmore College, Dept Biol, 500 Coll Ave, Swarthmore, PA 19081, USA. (E-mail: sgilber1@swarthmore.edu)

MROSOVSKY, N., G.D. RYAN & M.C. JAMES. 2009. Leatherback turtles: the menace of plastic. Marine Pollution Bulletin 58: 287-289. M. Mrososvky, Dept. of Ecology and Evolutionary Biology, University of Toronto, 25 Harbord St., Toronto, ON M5S 3G5, Canada. (E-mail: nicholas.mrosovsky@utoronto.ca)

NG, T.F.F., C. MANIRE, K. BORROWMAN, T. LANGER, L. EFHRAT & M. BREITBART. 2009. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. Journal of Virology 83: 2500-2509. M. Breitbart, Univ South Florida, College Marine Science, 140 7th Ave S, St Petersburg, FL 33701 USA. (E-mail: mya@marine.usf.edu)

J. Oros, Univ Las Palmas Gran Canaria, Fac Vet, Trasmontana S-N, Arucas 35413, Las Palmas, Spain. (E-mail: joros@dcmor.ulpgc.es)

PIKE, D.A. 2009. Natural beaches produce more hatching marine turtles than developed beaches, despite regional differences in hatching success. Biology Letters 5: 268-269. Univ Sydney, Sch Biol Sci A08, Sydney, NSW 2006 Australia. (E-mail: david.pike@bio.usyd.edu.au)

REIS, E.C., R.M. ALBANO, A.C.V. BONDIOILI, L.S. SOARES & G. LOBO-HAJDU. 2009. Detection of polymorphisms of the mtDNA control region of Caretta caretta (Testudines: Cheloniidae) by PCR-SSCP. Genetics and Molecular Research 8: 215-222. E.C. Reis, Departamento de Genetica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. (E-mail: est.cardinot@gmail.com)

RUSSELL, D.J. & G.H. BALAZS. 2009. Dietary shifts by green turtles (Chelonia mydas) in Kane’ohe Bay region of the Hawaiian Islands: a 28-year study. Pacific Science 63: 181-192. D. J. Russell, Dept. of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. (E-mail: drussell@aus.edu)

SNOVER, M.L. & S.S. HEPELL. 2009. Application of diffusion approximation for risk assessments of sea turtle populations. Ecological Applications 19: 774-785. M. L. Snover, NOAA, NMFS, Pacific Islands Fisheries Science Center, 2570 Dole St, Honolulu, HI 96822 USA. (E-mail: melissa.snower@gmail.com)

SUAREZ-MORALES, E. & E. A. LAZO-WAREM. 2009. On the morphology of Balaenophilus manatorum (Ortiz, Lalana, and Torres) (Copepoda: Harpacticoida) from sea turtles of the Mexican Pacific with notes on intraspecific variation. Comparative Parasitology 76: 84-92. E. Suarez-Morales, El Colegio Frontera Sur, Unidad Chetumal, Ave Centenario Km 5-5, Chetumal, Quintana Roo, Mexico. (E-mail: esuarez@ecosur.mx)

VAN DE MERWE, J.P., M. HODGE, J.M. WHITTIER & S.Y. LEE. 2009. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS). Analytical and Bioanalytical Chemistry 393: 1719-1731. J.P. van de Merwe, Griffith Univ., Griffith School Environment, Gold Coast Campus, Gold Coast, Qld 4222 Australia. (E-mail: j.vandemerwe@griffith.edu.au)

WHITING, A.U., A. THOMSON, M. CHALOUPKA & C.J. LIMPUS. 2008. Seasonality, abundance and breeding biology of one of the largest populations of nesting flatback turtles, Natator depressus: Cape Domett, Western Australia. Australian Journal of Zoology 56: 297-303. A.U. Whiting, School of Environmental and Life Sciences, Charles Darwin University, Northern Territory 0909, Australia. (E-mail: au.whiting@gmail.com)

WITHERINGTON, B.E., P. KUBILIS, B. BROST & A. MEYLAN. 2009. Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecological Applications 19: 30-54. B. Witherington, Florida FWCC - Florida FWRI, 9700 South A1A, Melbourne Beach, FL 32951, USA. (E-mail: witherington@cfl.rr.com)

TECHNICAL REPORTS

LWIN, M. M. 2009. Tagging activities of olive ridley turtle at Gadongalay and Gayetgyi Islands, Bogalay Township in Ayeyarwady Division, Myanmar. In: N. Arai (Ed.). Proceedings of 4th International Symposium on Seastar 2000 and Asian Bio-Logging Science, December 15-17, 2007, Royal Phuket City Hotel, Phuket, Thailand. Published by Kyoto University, Kyoto, Japan: 3-6. Environment and Endangered Aquatic Animals Conservation Unit, Dept. of Fisheries, Myanmar. (E-mail: fisheries@myanmar.com.mm, akthar10160@gmail.com)

MURUGAN, A. 2009. Conservation efforts of sea turtles in India: Socio-economics and the need for a comprehensive action plan. In: N. Arai (Ed.). Proceedings of 4th International Symposium on Seastar 2000 and Asian Bio-Logging Science, December 15-17, 2007, Royal Phuket City Hotel, Phuket, Thailand. Published by Kyoto University, Kyoto, Japan: 7-9. Suganthi Devadason Marine Research Institute, 44-Beach Road, Tuticorin-628 001, Tamil Nadu, India. (E-mail: muruganrns@yahoo.co.in)

ACKNOWLEDGEMENTS

Publication of this issue was made possible by donations from the following individuals: Dimitris Margaritoulis, Frank J. Schwartz, Judson M Parsons & Diana V. Gardener, Clifford Jones, Dr. Sandra E. Shumway and organizations: Conservation International, International Sea Turtle Society, IUCN - Marine Turtle Specialist Group, Sirtrack Ltd., US National Marine Fisheries Service-Office of Protected Resources, Western Pacific Regional Fishery Management Council, Wildlife Computers.

The MTN-Online is produced and managed by Michael Coyne.

The opinions expressed herein are those of the individual authors and are not necessarily shared by the Editors, the Editorial Board, Duke University, NC Wildlife Resources Commission, or any individuals or organizations providing financial support.
INSTRUCTIONS FOR AUTHORS

The remit of the Marine Turtle Newsletter (MTN) is to provide current information on marine turtle research, biology, conservation and status. A wide range of material will be considered for publication including editorials, articles, notes, letters and announcements. The aim of the MTN is to provide a forum for the exchange of ideas with a fast turn around to ensure that urgent matters are promptly brought to the attention of turtle biologists and conservationists world-wide. The MTN will be published quarterly in January, April, July, and October of each year. Articles, notes and editorials will be peer-reviewed. Announcements may be edited but will be included in the forthcoming issue if submitted prior to the 15th of February, May, August and November respectively. All submissions should be sent to the editors and not the members of the editorial board. A contact address should be given for all authors together with an e-mail or fax number for correspondence regarding the article.

Text
To ensure a swift turnaround of articles, we ask that, where possible, all submissions be in electronic format either as an attached file in e-mail or on compact disc in Word for Windows or saved as a text file in another word-processing package. Should these formats not be suitable, authors should contact the editors to seek alternative arrangements. If internet access or compatible computer facilities are not available, hard copies of the article can be sent to the editors by mail or fax. Scientific names should be italicised and given in full in their first appearance. Citations in the text should be in alphabetical order and take the form of: (Carr et al. 1974; Hailman & Elowson 1992; Lagueux 1997).

Please keep the number of references to a minimum.

Tables/Figures/Illustrations
All figures should be stored as separate files: .tif or .jpeg format. The editors will scan figures, slides or photos for authors who do not have access to such facilities. Tables and figures should be given in Arabic numerals. Photographs will be considered for inclusion.

References
The literature cited should include only references cited in the text. All journal titles should be given in full. Please use the following formats:
For an article in a journal:

For a book:

For an article in an edited volume:

Where there are multiple authors the initials should precede the last name except in the case of the first author:

SUBSCRIPTIONS AND DONATIONS

The Marine Turtle Newsletter (MTN) is distributed quarterly to more than 2000 recipients in over 100 nations world-wide. In order to maintain our policy of free distribution to colleagues throughout the world, the MTN must receive $30,000 annually in donations. We appeal to all of you, our readers and contributors, for continued financial support to maintain this venture. All donations are greatly appreciated and will be acknowledged in a future issue of the MTN. Typical personal donations have ranged from $25-100 per annum, with organisations providing significantly more support. Please give what you can. Donations to the MTN are handled under the auspices of SEATURTLE.ORG and are fully tax deductible under US laws governing 501(c)(3) non-profit organisations. Donations are preferable in US dollars as a Credit Card payment (MasterCard, Visa, American Express or Discover) via the MTN website <http://www.seaturtle.org/mtn/>. In addition we are delighted to receive donations in the form of either a Personal Cheque drawn on a US bank, an International Banker’s Cheque drawn on a US bank, a US Money Order, an International Postal Money Order, or by Direct Bank Wire (please contact mcoyne@seaturtle.org for details) Please do not send non-US currency cheques.

Please make cheques or money orders payable to Marine Turtle Newsletter and send to:

Michael Coyne (Managing Editor)
Marine Turtle Newsletter
1 Southampton Place
Durham, NC 27705, USA

Email: mcoyne@seaturtle.org